Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Copyright © 2020, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel
Corporation in the U.S. and other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the

applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Software

CPU & GPU Performance
analysis
Vtune & Advisor

Paulius Velesko
paulius.velesko@intel.com

Application Engineer

Intel® Software Development Tools for Tuning

= Compiler Optimization Reports - Key to identify issues preventing automated
optimization

" |ntel® VTune™ Application Performance Snapshot - Overall performance
= Intel® Advisor - Core and socket performance (vectorization and threading)
= Intel® VTune™ Profiler - Node level performance (memory and more)

= |ntel® Trace Analyzer and Collector - Cluster level performance (network)

Optimization Notice

Copyright © 2020, Intel Corporation. All ri r
*Other names and brands may be claime

Get the tools

(intel.

PARALLEL

Intel profiling tools are now FREE STUDIO XE

Current Parallel Studio Tools:

https://software.intel.com/en-us/vtune/choose-download

https://software.intel.com/en-us/advisor/choose-download

oneAPI

https://software.intel.com/content/www/us/en/develop/tools/oneapi.html

Next-Gen OneAPI Tools:

Optimization Notice

Copyright © 2020, Intel Corporatiol
*Other names and brands may be cl

https://software.intel.com/en-us/vtune/choose-download
https://software.intel.com/en-us/advisor/choose-download
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html

Agenda

* Vtune
* CPU Architecture Performance Analysis
e GPU Profiling
* Advisor
* CPU Vectorization
* GPU Roofline
» Offload Advisor

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® Advisor

Intel® Advisor — Vectorization Optimization

FILTER: | AllModules ~|[AllSources [Loops || All Threads ~| INTEL ADVISOR 2017

@D Summary % Survey Report | @ Refinement Reports

Faster Vectorization Optimization: S —

|FLops
sssss | GrLops

.....

. . . in 5252 at loops90.£:1172] | O 2.0%

L Vecto rize Where 1t Wi ” pay Off most in 2101 at loops90.£:1749] @ 2 Ineffi.. s 01361 0065 &
126 at loops90.£:447] 2Prov... 0.997s (BB Scalar 03971 0.1667 @ ve

u H H H H H 343 at loops90.£:2300] 2 Assu... 0.875s [BEE Scalar G ve

QUICkly ID What IS bIOCkIng VeCtorlzatlon 141_SompSparallel_for ... @2A 0.8245 (B Scalar 00611 0.0833 W vectorde..
. . . . 353 at loops90.£:2381)] @ 1P 0.7195 @m0 Vectorized (... 27710 01250 AVX2 2.78x
= Tj ps fo r effe ctive vectorization 0 lloop in 232 SompSparalil for.. ©3Pov.. 093Em Scolr Versions 02881 02220 8 1 vectord.. .
< >

= Safely force compiler vectorization
= Optimize memory stride

Roofline model analysis:

= Automatically generate roofline model

= Evaluate current performance

= |dentify boundedness

0.033 0.54

http://intel.ly/advisor-xe

Add Parallelism with Less Effort, Less Risk and More Impact

Copyright © 2020, Intel Corporation. All rights reserved. ‘ II'Itel I 7

*Other names and brands may be claimed as the property of others.

http://intel.ly/advisor-xe

Typical Vectorization Optimization Workflow

There is no need to recompile or relink the application, but the use of -g is recommended.
1. Collect survey (overhead ~5%) advixe-cl -c survey
= Basic info (static analysis) - ISA, time spent, etc.
2. Collect Tripcounts and Flops (overhead 1-10x) advixe-cl -c tripcounts -flop
= |nvestigate application place within roofline model
= Determine vectorization efficiency and opportunities for improvement
3. Collect dependencies (overhead 5-1000x) advixe-cl -c dependencies
= Differentiate between real and assumed issues blocking vectorization

4. Collect Memory Access Patterns advixe-cl -c map

Optimization Notice

©
*

Survey

Starting point for all Advisor analyses
 Where is time being spent?
 What is vectorized?

* Issues preventing Vectorization

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

(3] comdine e [6 Gromever]]]

"~ FILTER| AllModules ~|[AllSources ~|| Loops And Functions || All Threads ~ . _INTELADVISORBETA

B Summary | % Survey & Rooffine | %{ Refinement Reports

4[] Function Call Sites and @Performance | CPU Time. oo Why No Vectorized Loops 51~
Loops Issues Self Time v Vectorization? | Vector...|Efficiency | Gain E... | VL (Ve..

22,2905 W Vectorized (Body; P.

s [EEL Jiox 2
SSE2
SSE2

floop in col_{_e_and_d_m_Somps§, & 1 Potential under.

2
2
8% |EX 2

lloop in ellip_agm_v at elliptics 9| & 1 Unoptimized fl... 4.100s1 4100s8 Vectorized (Body) sse2 [EI00%I|243x 2

« § PetscCheckPointer 1.640s) 1.600s1 Function
- 1 Bicub<Kokkos:Device <Kokkos:Of 145081 145050 nlined Function J
< >¢ >
Suume‘Tuvaml" i IAsenMylv’ i ‘ﬁwhyNn ‘
All Compiler Diagnostics

Loop vectorization possible but seems inefficient

Cause: The compiler vectorizer determined the loop will not benefit from vectorization. Common reasons include

« Non-unit stride memory access
« Indirect memory access
« Low iteration count

Issue detection is in progress..[0%) |

& Program metrics

Elapsed Time 78.39s Number of CPU Threads 1
Vector Instruction Set AVX2, AVX, SSE2, SSE

@ Performance characteristics

Metrics Total & MKL details *
Total CPU time 76.91s N 100%
Time in 31 vectorized loops 51.65s 67.2%
Time in scalar code 25.26s L] 32.8%

© Vectorization Gain/Efficiency
Vectorized Loops Gain/Efficiency @ 1.80x | ~89%

Program Approximate Gain® 1.53x

Tripcounts & Flops

mmary % Survey & Roofline | ®i Refinement Reports

a8 Function Call Sites and Compute Performance
. Loops Self GFLOPS Total GFLOPS Self Al Total Al
Ca n b e r' u n a fte r‘ S u rvey I S CO m p I ete H [loop in col_f e_and_d_m_$or 4.728 0 4.728 0.348 0.348
H [loop in col_f_e_and_d_s_Somp 6.067 3 6.067 0.250 0.250
H [loop in col_f_angle_avg_m_$q 4.559 @@ 4559 0.328 0.328
. H [loop in col_f_angle_avg_m_$c 0.000] 0 0 0
[] L T p t H [loop in ellip_agm_v at elliptic 3.917 @3 3.917 0.150 0.150
O O p rl CO u n S sl f PetscCheckPointer 0.0001 0 0 0
4O [loop in col_f_e_and_d_s_Somg 04990 5.460 0.027 0.231
< f Bicub<Kokkos:Device<Kokkos 2508 @ 2314 0.188 0.188
P F I O p S 4G [loop in ellip_agm at elliptics.f| 1.3140 1314 0.615 0615
#© [loop in col_f_angle_avg_m_$c| 3.768 0 3768 0437 0438
40 [loop in col_f_angle_avg_s_$or, 2.349@ 1762 0.132 0.182
4G [loop in col_f_angle_avg_m_$c 0.000| 0 0 0
4 > <

 Memory Traffic

&Roofline % Refinement Reports

eIy v [Cores 19 + |[Y Default: FLOAT CARM (L1+NTS) + | [Compare ~ || * Guidance +

e Arithmetic Intensity

 Roofline

10 100 1000 10000 100645 1.00e+6

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

4l

D e p e n d e n C i e S Welcome | snapshot000000 (read-only) testnopack000 (read-only) x

FILTER:| All Modules || All Sources | INTEL ADVISOR BETA
Summary % Survey & Roofline ™ Refinement Reports
~
. Site Location Loop-Carried Dependencies Strides Distri
Runs through your code tracking _ _ _
[loop in MPIDI_OFI_mpi_init_hook at ofi_init.c:1034] @&No Dependencies Found No Informati
o) p e rat | ons b etwe en memo ry (o) b_] e CtS [loop in MPIDI_OFI_mpi_init_hook at ofi_init.c:1034] Q@RAW:T AWAW:1 No Informati
[loop in _GLOBAL_sub_|_acl_platform.cpp at libalteracl.so:0x1e0c.. No Information Available 0% / 100% /
EilNlAann in M Aicnaca ot hacie ctrina h-212801 AN A Nanandanciac EAnnd N~ Ctridac Er v
< >

* |dentifies loop carried dependencies

Memory Access Patterns Report | Dependencies Report | ¥ Recommendations ‘

H Problems and Messages ‘

* Allows to safely force vectorization o lelipe steName souces Severity g

P1] 4 |Inconsistent lock use IIoop_site_B {[Unknown]; ofi_init. Error 2 items
. P5 @ Parallel site information loop_site_13 ofi_init.c Information 1 item
° #p ragm a O m p S | m d P16 @ Read after write dependency loop_site_13 [Unknown]; ofi_init.c Warning 1 item
P17 @ Write after write dependency loop_site_13 [Unknown]; ofi_init.c v
< > Type
[#pragma ivdep Inconsistent lock use 1item
- — ~ Parallel site informati... 1item
ID Instruction Address Description Source Read after write depe... 1 item
H X1 0x7f10 Parallel site & libfabric.s0.1:05 : - P
([] Write after write depe... 1 item
H Ig h Ove r h e a d X2 0x1707, 0x1737 Read = ofi_initc:1034
X3 0x1735, 0x1746, 0x1716 Write £ ofi_init.c:1034 ?‘f“_"e)) v
B . .) o e) —
° Run on sma”est pOSS|b|e Input (X4 0xf94 First access lock defined = 0f|_|n|t.c.1034; v Sort By ltem Name »

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory Access Patterns S

FILTER:| All Modules ~ || All Sources] INTEL ADVISOR BETA
Summary % Survey & Roofline ®j Refinement Reports
~
Site Location Strides Distribution Loop-Carried Depe
Observes memo ry o bj ect access p atterns lloop in _tcf_0 at libalteracl so:0x57260] 0%/100%/0% | No Information Avz
o [loop in fi_ini at libfabric.so.1:0x7f10] 52% / 6% [42% No Information Av:
| n IOO pS B [loop in getCurrentDSODir[abi:cxx11] at libsycl.so.1:0x1aec30] M\ # No Dependencie]
[loop ininitialize at libsycl.s0.1:0x143df0] No Strides Found No Information Av:
. [loop in ofi_getifaddrs at libtcp-fi.s0:0xd2cf] No Strides Found No Information Ave
e C I a SS I fy I OO p S b a Se d O n p a tte rn Eloon in aueue at aueue.hnn:A91 No Information Available @No Denendencie ™
< >

Memory Access Patterns Report ‘ Dependencies Report ‘ ‘¥ Recommendations ‘

° U n It Strl d e ID ‘ ‘ Stride ‘Type ‘ Source ‘ Nested Function v Variable reference
P16. 41; 49; 80... Variable stride libstdc++.50.6:0xfb5 ... sentry block 0x24e40a0, |
° 1 P16. 0; 14 Variable stride libstdc++.50.6:0xfb5 ... sentry
CO n Sta nt St rl d e P86 @ 0 Uniform stride libsycl.s0.1:0x5fb70 ignore _GLOBAL_OFFSET_
P88 @ 0 Uniform stride libsycl.s0.1:0x602f0 ignore _GLOBAL_OFFSET_
° Ra ndom Access P16. 41; 49; 88... Variable stride libstdc++.50.6:0xaac... ignore block 0x24e40a0, |
P16. 41; 49; 80... Variable stride libstdc++.50.6:0xaa... ignore block 0x24e40a0, |
P16. 41; 114 Variable stride libstdc++.50.6:0x10... _M_extract_int<unsigne... block 0x24e40a0, |
° St r i d es i zZe fo r con Sta nt St r i d e P87 @ 0 Uniform stride libsycl.s0.1:0x602e0 _M_extract<unsigned lo... (GLOBAL_OFFSET_
P5 4 Constant stride libc.50.6:0x18a540 [Unknown] block 0x3178cb0
Pé6 4 Constant stride libc.so.6:0x18a544 [Unknown] block 0x3178cb0 ,
< >

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

GPU Roofline

S Fl 7
B
Intel Advisor can collect GPU GFLOPs
R Q |Y GTI (Memory) v || A Guidance v | =
. . . . o~ ANAT DO ?
* Report kernel arithmetic intensity 10001 2 Fanp STV AE GFLOPE (AR OPS,
19 «%;:“E@g; ,,,,, IR N S F,’V,QQ“?[ME’,E’?@K,@%ZJ?,@F!—QF,'?,
400 @ S OP Vo1 41 GRLOPE (1 FS
R i = ey - R s 1)@ -
* GFLOPs Q,g.g?i—_;&?_ @ﬁé O R DP Vector Add Peak: 157. J_s_@ﬁ_o_l?@f_
b ’%'Y:'éé“&\&\\ ot Soif Porfrmance: 265.296 GFLOPS
1 I L ek elf Performance: 285.
 Generate roofline 40 152 \g&%i‘/ Self GTI (Memory) Arithmetic Intensity: 17311.663 FLOP/Byte
R & Self Elapsed Time: 4.066 s
))) 104> Q)@@ Self Memory Traffic: 0.067 GB
Not yet integrated into Advisor GUI T
. , FLOP/Byte (Arithmetic Intensity)
Reports saved as HTML files o 1 . oS 1000 0000

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® VTUNE™ Amplifier

Intel® VTune™ Amplifier

VTune Amplifier is a full system profiler

= Accurate

= Low overhead

= Comprehensive (microarchitecture, memory, 10, treading, ...)
= Highly customizable interface

= Direct access to source code and assembly

= User-mode driverless sampling

= Event-based sampling

Analyzing code access to shared resources is critical to achieve good performance on
multicore and manycore systems

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Predefined Collections

Many available analysis types:

= uarch-exploration General microarchitecture exploration
= hpc-performance HPC Performance Characterization

" memory-access Memory Access

= disk-io Disk Input and Output

= concurrency Concurrency

= gpu-hotspots GPU Hotspots

= gpu-profiling GPU In-kernel Profiling

= hotspots Basic Hotspots

® |ocksandwaits Locks and Waits Python SUpport
" memory-consumption Memory Consumption (SW Sampling)

= gystem-overview System Overview

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Analyze Performance Over Time

Observe individual performance-affecting Slice and dice your data

aspects over time

O: =+

e HW Event - Thread

e Source Line - Thread - Time Slice

OMP Worker Thread #6 (TID...

Hardware Event Type [ead

UOPS_EXECUTED.THREAD

INST_RETIRED.ANY

INST_RETIRED.PREC_DIST

FP_ARITH_INST_RETIRED.2...

UOPS_ISSUED.ANY

UOPS_RETIRED.RETIRE_SL...

IDQ.DSB_UOPS

CPU_CLK_UNHALTED.REF _...

Optimization Notice

Copyright © 2020, Int

*Other names and bra

Explore HW Counter Data

Vtune uses Intel’s SEP driver to read CPU
HW counters

e uArch Exploration
* Most coverage, time multiplexing

* Classify functions/loops
* Front-End Bound
* Back-End Bound

* Retiring

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Issue: A significant portion
of Pipeline Slots is remaining

25.8% - Front-End Bound empty due to issues in the
. Front-End.

55.1% - Retiring

e —

This metric represents how
much Core non-memc

MUPipe
This diagram represents inefficiencies in CPU usage. Treat it as a pipe with an output flow
equal to the "pipe efficiency” ratio: (Actual Instructions Retired)/(Maximum Possible
Instruction Retired). If there are pipeline stalls decreasing the pipe efficiency, the pipe
shape gets more narrow.

Hardware Events ' (V)
Hardware Event Type Hardware Event Count
CPU_CLK_UNHALTED.REF_TSC 65,383,500,000
CPU_CLK_UNHALTED.REF_XCLK 429,212,876

CPU_CLK_UNHALTED.THREAD 65,359,000,000
CPU_CLK_UNHALTED.THREAD_P 62,466,093,699
CYCLE_ACTIVITY.STALLS_MEM_ANY 11,194,016,791
EXE_ACTIVITY.1_PORTS_UTIL 23,606,035,409
EXE_ACTIVITY.2_PORTS_UTIL 18,212,027,318

Analyze OpenMP Performance

Analyze performance of individual
OpenMP Loops

Logical Core Utilization

Average Physical Core Utilization

 Evaluate workload-to-thread ratio

L Ove r h e a d A n a IyS i S Simultaneous! ly Utilized Logical CPUs

* Load imbalance O 4 = 246ms 250ms
> Worker Thread #1 (TID... : :

® Th read Creatlon > Worker Thread #6 (TID...
?> Master Thread #0 (TID:...

° Reductlons >Worker Thread #2 (TID...
> Worker Thread #4 (TID...

N atom |CS > Worker Thread #5 (TID...

>Worker Thread #7 (TID...

(
(
(
(

>Worker Thread #3 (TID...

* GFLOPs per loop/function

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

GPU Offload Profiling

Recommendations
Coarse-grain gpu-offload profile GPU Utilization:28.8%

GPU utilization is low. Switch to the Bottom-up view for in-depth analysis of
host activity. Poor GPU utilization can prevent the application from offloading

* Analyze the utilization of GPU effectively.

. EU Array Stalled/Idle:47.4%
® Time spent on CPU vs GPU GPU metrics detect some kernel issues. Use # GPU Compute/Media

Hotspots (preview) to understand how well your application runs on the
specified hardware.

* Explore opportunities for asynchronous
execution

PR TTIN [T ST S S TR S S TR St
L TR S I B |'

| nbody.x (TID: 29226)

CPU Time
EOEIET AT ETIETT R 98.2%

* BeSt for Spin and Overhead Time
0.0%
* Finding new offload opportunities GPU Engines Usage
i S L Render and GPGPU: 1 L
* Balanced view of CPU and GPU work L=] =] computing sk 7

Start: 1581.58ms Duration: 1.26ms
Computing Task: update_accel
Purpose: Compute

Global Size: 6144

Local Size:

SIMD Width: 8

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

GPU Execution Profiling

Memory Hierarchy Diagram m — - -

Stalled: 18.5%

* Feeds and speeds between all memory [
layers —

Total: 77.223 —— SLM:0.000 —> <

HW Event Counters —

flization: 14.9%

Platform
O: o = 0 | 42 435 44s 45 46s
bbb, ,

* EU Occupancy

47s 48s 495 55 51s 525 53s

| im il
o B N | S § 5 S S
8| nbodyx (TID: 11608) | |
£ [N LT T TN NN O O O Y |
* EU Stall rate
GPU Execution Units S S POy
L IP{ GPU Computing Threads Disp... | NEWPTIHAT At —iri——= WV =il ool b4
GPU EU Instructions RV T WW'W*"V“"VWW‘”"’*’V‘ ;WV‘\/"_“V(’WWWW W
GPU EU Memory Access Coal... | ’

® M e B W GPU Shared Local Memory Ac...

GPU Utilization

GPU Frequency |

e SIMD Utilization e

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Source-Assembly View

Identify performance bottlenecks down to
a single line of code

Quickly extract assembly for JIT
* OpenMP Target

e SYCL/DPC++

* OpenCL

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

& cruc GPUC < INTEL VTUNE PROFILER
Analysis Configuration Collection Log Summary Graphics Computecpp * Computecpp X Comput s —

EREE = & & b e Assemblygrouping| Address v 0

ia Hotspots (

) v ® m@

L — GPU Instructions Executec | | Addr... 4 |Sourc Assembly } GPU Instructions Executed
8 Control Flow @ Send B1nt3 | | 0x50

0x50 109 384,000

1652000 0x60 109 384,000

0x70 125,000

060 114 125000

000 115 125,000

00 114 125000

250,000 b0 115 125,000

250,000 0xc0 116 mov (LIMO) ri25.0<1>:ud r127.1<0;1,0>u 125,000

125,000 odo 117 @iM0) r127. - 125,000
750250000 EEE | 00 (11M0) = F 0;1,0 125000 |2
118 yee dx, dy, 0xf0 nov (11 125000 |~
119 0100 117 (1M0) r125. 5 125000 _
120 0x110 11M0) 1 125000 | =
121 0x120 125000 |
122 0x130 125000 |-
123 0x140 122 250000000 |~
124 050 117 250000000 -
125 0x160 123 250000000 |~
126 0x170 122 0 250000000 -
127 0x180 124) (1140) 250000000 =
128 0190 117 (11M0) r125. 250000000 -
129 0x1a0 123 “ 250000000
130 Ox1b0 122 250000000 -
1 0x1c0 124 250000000
132 0xid0 129 250000000 -
133 0x1e0 123 250000000 #

134 oxifo 124 250,000,000

135 0x200 130 250,000,000

0210 129 250,000,000

Compiling Applications for Profiling

Compile DPC++ Applications with :
-g -gline-tables-only -fdebug-info-for-profiling

All other:

-8

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

CLI and GUI Profiling

vtune -c uarch-exploration \
-result-dir uarch_exp 01 \
-knob \
collect-memory-bandwith=true \
-trace-mpi \

-start-paused \
-resume-after=1.5 \

-- binary.x argl arg2

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Microarchitecture
Exploration

Analyze CPU microarchitecture bottlenecks affecting the
performance of your application. This analysis type is based on
the hardware event-based sampling collection. .earn.mare

€ Cannot enable Hardware Event-based Sampling due to a
problem with the driver (sep®/sepdrv*). Check that the driver
is running and the driver group is in the current user group
list. See the "Sampling Drivers" help topic for further details.

€ To collect hardware events, run the product as administrator.

Retry

CPU sampling interval, ms
1
Extend granularity for the top-level metrics:
« Front-End Bound
« Bad Speculation

« Memory Bound

OpenCL vs Level Zero

Level Zero support is still under
development - for now use OpenCL

* OpenMP Target

export LIBOMPTARGET_PLUGIN=OPENCL
export LIBOMPTARGET_PLUGIN=LEVELO

* DPC++

export SYCL_BE=PI_OPENCL
export SYCL_BE=PI_LEVELO

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Support Aspect

Operating System

Data collection

Data display

Display Host side API
calls

Source Assembler for
computing tasks

DPC++ application with OpenCL as back
end

Linux OS

Windows OS

VTune Profiler collects and shows GPU
computing tasks and the GPU computing
queue.

VTune Profiler maps the collected GPU HW
metrics to specific kernels and displays
them on a diagram.

Yes

Can drill down to Level Zero computing
tasks using Source Assembler.

DPC++ application with Level Zero as
back end

Linux OS only

VTune Profiler collects and shows GPU
computing tasks and the GPU computing
queue.

VTune Profiler maps the collected GPU
HW metrics to specific kernels and
displays them on a diagram.

Yes

Unavailable

Vtune hands on

Collect uarch-exploration

cd /projects/intel/pvelesko/nody-demo/ver7

vim Makefile # edit to add -dynamic
cp /soft/perftools/intel/advisor/amplxe.qsub ./

vim amplxe.qsub # edit collection to “uarch-exploration’

gsub ./advixe.qsub ./nbody.x 2000 500

scp result back to your local machine

Optimization Notice

Copyright © 2020, Intel Col tion
*Other names and brands

A et b

Algorithm Analysis
Basic Hotspots
Advanced Hotspots
Concurrency

Locks and Waits

Memory Consumption

A Analysis Type

Analysis

Microarchitecture Analysis

General Exploration
Memory Access
TSX Exploration
TSX Hotspots

SGX Hotspots

Platform Analysis
CPU/GPU Concurrency
System Overview

GPU Hotspots

GPU In-kernel Profiling
Disk Input and Output

Custom Analysis

PRV VI VI

Bz b8 DS O vwecome [

HPC Performance Characterization

Analyze important aspects of your application performance, including CPU utilization with additional details on OpenMP efficiency analysis,

memory usage, and FPU utilization with vectorization information.

For vectorization optimization data, such as trip counts, data dependencies, and memory access patterns, try Intel Advisor. It identifies the loops

that will benefit the most from refined vectorization and gives tips for improvements.

The HPC Performance Characterization analysis type is best used for analyzing intensive compute applications. Learn more (F1)

A Vectorization analysis is limited for this platform. Only metrics based on binary static analysis such as vector instruction set will be available.

CPU sampling interval, ms

(1

|
Copy Command Line to Clipboard@jlselogin2

Command line:

lperformance -app-working-dir fusr/bin -- Is

[Use -collect-with action

Hide knobs with default values

[soft/compilers/inteljvtune_amplifier_2018.1.0.535340/bin64/amplxe-cl -collect hpc-

s and brands may be claimed as the property

-

Qa Command Line... :

Hotspots analysis for nbody demo (ver7: threaded)

* gsub amplxe.gsub ./your_exe ./inputs/inp

Bm) D@ O wekome viuneres X = OpenMP Region Duration Histogram
& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ INTELVTUNE AMPLIFIER zmn‘ This histogram shows the total number of region instances in your application executed with a specific duration. High number of slow instances may signal a performance

Bl Collection Log © Analysis Target A Analysis Type & Summary & Bottom-up @ Caller/Callee @ Top-down Tree - Platf bottieneck. Explore the data provided in the Bottom-up, Top-down Tree, and Timeline panes to identify code regions with the slow duration.

OpenMP Region: [startSompSparallel64@unknown:146:182 -
Elapsed Time : 1.037s

CPU Time ?: 21.420s 5009 ¢
Effective Time “: 2.280s 3
Spin Time “: 18.660s & 4004 8
Imbalar S g 17.319s & 2
L n 0s 2004 <
Other 1.342s
Overhead Time “: 0.480s 200
Total Thread Count 64
Paused Time 0s 100
OpenMP Analysis. Collection Time : 1.037 0 0002 yom
Serial Time (outside parallel regions) ": 0.733s (70.7%) &
Top Serial Hotspots (outside parallel regions)
Parallel Region Time ": 0.304s (29.3%) Duration Type (sec)

Top Hotspots
CPU Usage Histogram Lots of spin time indicate issues with load balance and synchronization

This histogram displays a percentage of the wall ime the specific number of CPUs were running simuttaneously. Spin and Overhead time adds to the Idle CPU usage

1000ms

£y £ Given the short OpenMP region duration it is likely we do not have
s H sufficient work per thread
2::: i Let’s look a the timeline for each thread to understand things better...

]

Simultaneously Utiized Logical CPUs

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bottom-up Hotspots view

P i

by CPU Usage viewpoint (change) @

© O collectionLog O Analysis Target A Analysis Type & Summary & Bottom-up @ Caller/Callee & Top-down Tree ‘% Platform [GSimulation...

Grouping:| Module / Function / Call Stack
CPU Time ¥
Module / Function / Call Stack Effective Time by Utiization »
Side ®Poor Ok @ldeal @ Over

» libiomp5.so 0s
v nbody.x 2.260s _

g

“J[x][Q]fz]|[cPuTme
< Viewing « 10f 1+ selected stack
» »
P Module 100.0% (2.260s of 2.260s)
| nbody.xIGSimulation: startSomp.
0.320s + libiomp5.s0![OpenMP dispatche

0.160s { libiomp5 sol[OpenMP fork]+0x1

» GSimulation:startSompS$parallel_for@ 2.260s Os 0s | nbody.x T bt nbody xIGSimulation: start+0x69

» GSimulation:start

0.160s nhodyx GSimulation: start(void) nbody.x!main+0x86 - main.cpp:43

» [Unknown] 02 \ nbody.x!_start+0x28 - start.5:118
> < . >
ol w« x 0s 01s 02s 0.9s ...‘.‘Is.u. Ruler Area:

2 [= OpenMP Barrier-

£ OMP Worker Thread #60 (TI t0-Barrier Segment
OMP Worker Thread #56 (T
OMP Worker Thread #50 (T1 M Running
(OMP Worker Thread #55 (TI i CPU Time
OMP Worker Thread #54 (T s Spin and Overhea
OMP Worker Thread #49 (T) O EFIEEE
OMP Worker Thread #58 (TI LIICEULsaze
OMP Worker Thread #59 (1
OMP Worker Thread #61 (T
OMP Worker Thread #52 (Tl
OMP Worker Thread #41 (|
‘OMP Worker Thread #47 (Tl
OMP Worker Thread #35 (T1

FILTER 1000% & | |AnyProcess - | Theead | Any Thread || Any Module | Any Utiizatio ~ || Only user functions _ |{ Show iniine functic v | Functions only

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

There is not enough work per thread
in this particular example.

Double click on line to access source
and assembly.

Notice the filtering options at the
bottom, which allow customization of
this view.

Next steps would include additional
analysis to continue the optimization
process.

& Intel VTune Amplifier - O X

Z & b b G = O Welcome amplxe_distress__2019-04-10-20-23 x» =
Hotspots Hotspots by CPU Utiization + @ INTELVTUNE AMPLIFIER2019
Analysis Configuration Collection Log Summary Bottom-up gCaller/Callee Top-down Tree Platform y - /
Grouping:| Function / Call Stack t Mx]2][5]
Function / Call Stack CPUTime ¥ ”| Module | Function (Full) ‘ Source File l Start Address | ~
) vdpowr_ \ 18.664s libmkl_intel_Ip64.so vdpowr_ 0x695310
) aa 10.495s distress aa aux.foo Ox41ecic
) aa 9.674s distress aa aux.foo Ox41ec9a
) invariants 9.055s distress invariants aux.fo0 0x41d550
) __libm_csqrt_ex 7.792s libimf.so __libm_csqrt_ex Oxc7a50
) spinoru 7.779s distress spinoru aux.fo0 0x41e9e0
) ktjet 7.137s distress ktjet analysis.f90 0x420ae0
) __svml_log8_mask_b3 6.056s distress __svml_log8_mask_b3 0x532f50
) breit2lab 2.096s distress breit2lab PS.f90 0x4602d0
) getljet 1.857s distress getljet analysis.f90 0x421830
) me0_glglgg 1.814s distress me0_qlqglgg amplitudes.f90 0x4408d0
) __libm_acos_I9 1.688s libimf.so __libm_acos_I9 Oxedd80
) analyzejet 1.658s distress analyzejet analysis.f90 0x422050
) ds_qgl_s_nnlo_gcd_g 1.605s distress ds_gl_s_nnlo_qgcd_g sub.f30 0x4694e0
b csart 1.384s libimf.so csart 0x1d430 v
o+ os A M s B s s M0l [Tiveas V]
"_5- [~] waCPU Time
#Spin and Overhead ...

[] ®CPU Sample
CPU Utilization

WaCPU Time
#Spin and Overhead -..
m CPU Utilization
Cop r.i ht © —— - — - ntel, l 31
MU FILTER 100.0% % | |Any Process v| |Any Thread vl IAny Module v| |Any Utilizatir vl | |Userfuncﬂ0ns+1 vl IShowm[lne funct vl IFunctlons only vl

*Other nam:

Intel VTune Amplifier — O X

Z & b G = O | Welcome

Bottom-up

Grouping:l Function / Call Stack M | @
A

Function / Call Stack CPUTime ¥ | Module Function (Full) Source File Start Address
13.1% | libmkKI_intel_Ip64.so vdpowr_ 0x695310

) aa 7.4% distress aa aux.fo0 Ox41ecic
Y8 . B8% distress @ auxfoo Oxdtecoa
yinvariants 6.4% distress invariants auxfo0 0x41d550
» __libm_csqrt_ex 5.5% libimf.so _libm_csqrt_ex 0xc7a50
) spinoru 5.5% distress spinoru aux.fo0 0x41e9e0
» ktjet 5.0% distress ktjet analysis.f90 0x420ae0]
b __svml_log8_mask_b3 4.3% distress __svml_log8_mask_b3 0x532f50 i
) breit2lab 1.5% distress breit2lab PS.f90 0x4602d0
» getljet 1.3% distress getljet analysis.f90 0x421830
» me0_qglqlgg 1.3% distress me0_qlqlgg amplitudes.f90 0x4408d0
b __libm_acos_I9 1.2% libimf.so __libm_acos_I9 Oxedd80
) analyzejet 1.2% distress Vanalyzejet analysis.f90 0x422050
» ds_gl_s_nnlo_qgcd_g 1.1% distress Vds_ql_s_nnlo_ch_g sub.f90 0x4694e0
» csart 1.0% 'libimf.so |esart 0x1d430 v
< > || < >
O:s = o 0s 20s 40s 60s 80s 100s 120s 140s |Thread v| 2
§ distress (TID: 55598) [ERunning
= #aCPU Time
i Spin and Overhead ...

[] ®CPU Sample

CPU Utilization
#aCPU Time
#Spin and Overhead ..

CPU Utilization

@| 32
e

Y Any Thread ~ || Any Module ~ || Any Utilizatii v User functions +1 ~| : Show inline func{ v

Copyright ©)
° B’

Intel VTune Amplifier

E&F P &= 0

Welcome

CPU Utilization

Any Thread ~| | Any Module v || Any Utilizatii v

Bottom-up
Grouping:{ Source Function / Function / Call Stack v|@
Source Function/ Function / Call Stack CPUTime ¥ »/| Module Function (Full) Source File Start Address ~

) aa 14.2% aa aux.fo0 0
b vdpowr_ 13.1% vdpowr_ 0
) invariants 6.4% invariants aux.f90 0
b __libm_csqrt_ex 5.5% __libm_csqrt_ex 0
) spinoru 5.5% spinoru aux.fo0 0
» ktjet 5.0% ktjet analysis.f90 0
b __svml_log8_mask_b3 4.3% __svml_log8_mask_b3 0]
» subgcd 3.2% subqcd amplitudes.f90 0 i
) breit2lab 1.6% breit2lab PS.f90 0
» hamp_qlglagb_1 1.4% hamp_glqlggb_1 amplitudes.f90 0
» getljet 1.3% getljet analysis.f90 0
» me0_qlglgg 1.3% me0_glqglgg amplitudes.f90 0
» __libm_acos_I9 1.2% __libm_acos_I9 0
) analyzejet 1.2% analyzejet analysis.f90 0
z hamo alalaab 2 sl 1.1% hamp alalaab 2 amplitudes.f90 0 . v

O:s = o 0s 20s 40s 60s 80s 100s 120s 140s |Thread v| 2
§ distress (TID: 55598) [ERunning
£ WaCPU Time

i Spin and Overhead ...

[] ®CPU Sample

CPU Utilization
#aCPU Time
#Spin and Overhead ..

User functions +1 || Show inline funcf v

@| 33
e

Intel VTune Amplifier — O X

Z & b G = O | Welcome

Bottom-up

Grouping:| Source Function / Function / Call Stack v | @
A

Source Function / Function / Call Stack CPUTime ¥ »/| Module Function (Full) Source File Start Address
27.5% spinoru aux.fo0

0
) invariants 9.0% invariants aux.f90 0
) getpdfs 8.3% getpdfs fitpdf.f90 0
I ktjet 6.9% ktjet analysis.f90 0
» me0_qlqlgg 6.1% me0_qlqlgg amplitudes.f90 0
b __svml_log8_mask_b3 5.9% __svml_log8_mask_b3 0
) breit2lab 2.5% breit2lab PS.f90 0]
b dli2 2.4% dli2 lis.f90 0 i
» getljet 1.8% getljet analysis.f90 0
) analyzejet 1.6% analyzejet analysis.f90 0
» me0_glglggb_f3 1.6% me0_glqlqgb_f3 amplitudes.f90 0
> ds_ql_s_nnlo_qgcd_g 1.6% ds_gl_s_nnlo_gcd_g sub.f30 0
» me0_qglglggb_f4 1.3% me0_qlqlqgb_f4 amplitudes.f90 0
) ps4 1.3% ps4 PS.f90 0
» for costr 1.3% for costr 0 v
< > || < >
O:s = o 0s 20s 40s 60s 80s 100s 120s 140s |Thread v| 2
§ distress (TID: 55598) [ERunning
£ WaCPU Time

#aSpin and Overhead ...
[®CPU Sample

CPU Utilization
#aCPU Time
#Spin and Overhead ..

CPU Utilization

S 9% o Any Thread ~| |98 .9%] distres: v | | Any Utilizatic ~| | |Userfunctions +1 ~| | Hide inline functic v

n

[@| 34
e

= S (| =2 Welcome amplxe_distress__2019-04-10-20-23

Hotspots Hotspots by CPU Utilization ~ @

@ Intel VTune Amplifier

O

INTELVTUNE AMPl.lFlER'ZU]E
aux.f90 x aux.ﬂﬂjM

X

Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform
Grouping:| Source Function / Function / Call Stack v | @
Source Function/ Function / Call Stack \ CPUTime ¥ »/| Module Function (Full) Source File Start Address "
[Loop at line 264 in spinoru] 23.8% [Loop at line 264 in spinoru] aux.f90 0
) [Loop at line 141 in nnlobeami] 19.3% [Loop at line 141 in nnlobeami] beamintegrand.fo0 0
) [Loop at line 2499 in dxsec_gl_nnlor] 11.1% [Loop at line 2499 in dxsec_gl_nnlor] xsec.f90 0
) [Loop at line 112 in vegas] 10.6% [Loop at line 112 in vegas] vegas.f90 0
) [Loop at line 2750 in dxsec_gl_nnlov_a] 3.2% [Loop at line 2750 in dxsec_gl_nnlov_a] xsec.f90 0
) [Loop at line 60 in ktjet] ‘ 3.1% [Loop at line 60 in ktjet] analysis.f90 0
) [Loop at line 1778 in ds_gl_s_nnlo_gcd_g| 2.9% [Loop at line 1778 in ds_ql_s_nnlo_gcd_g] sub.f80 0
) [Loop at line 181 in invariants] 2.6% [Loop at line 181 in invariants] aux.f80 0
) [Loop at line 180 in invariants] 2.1% [Loop at line 180 in invariants] aux.f80 0
) [Loop at line 2055 in ds_gl_s_nnlo_gcd_ 2.0% [Loop at line 2055 in ds_ql_s_nnlo_qgcd_f2] sub.fS0 0
) [Loop at line 43 in ktjet] 2.0% [Loop at line 43 in ktjet] analysis.f90 0
) [Loop at line 1986 in ds_gl_s_nnlo_qgcd_f| 1.8% [Loop at line 1986 in ds_ql_s_nnlo_qgcd_f1] sub.fS0 0
) [Loop at line 1882 in ds_gl_s_nnlo_gcd_g| 1.8% [Loop at line 1882 in ds_ql_s_nnlo_gcd_g] sub.f90 0
) [Loop at line 1846 in ds_ql_s_nnlo_ch_d‘ 1.8% [Loop at line 1846 in ds_ql_s_nnlo_gcd_g] sub.f90 0
» ILoop at line 1812 inds al s nnlo acd | 1.7% ILoob at line 1812 inds al s nnlo acd al sub.f90 0 i
< >
O: & = i« [0s] 20s 40s 60s 80s 100s 120s 140s [Thread -
¥ distress (TID: 5598) ' ERunning
"_E- WaCPU Time
i Spin and Overhead ...
[] ®CPU Sample
CPU Utilization
WuCPU Time
#Spin and Overhead -..
m CPU Utilization
fg‘:z'ﬁ‘f:z : FILTER 0 98.9% x | IAny Process v| IAny Thread vl [98.9%] distrest vl IAny Utilizatic v| | | User functions + 1 vl | Show inline functi v| | Loops only vl

& Intel VTune Amplifier - O X

Z & r b B = O Welcome amM’ess_2019-04-10-20-23 x =
Hotspots Hotspots by CPU Utiization ~ INTELVTUNE AMPLIFIER2019

Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree = Platform aux.f80 x aux.ﬂﬂ,M
Grouping:‘ Call Stack v‘@

Function Stack CPU Time: Total ¥ > | CPU Time: Self > Module ‘ Function (Full) | Source File | Start Address | ~
v Total 100.0% Os
v [Outside any loop] ‘ 99.9% 0.020s [Outside any loop] 0
v [Loop at line 100 in vegas] ‘ 99.6% Os distress [Loop at line 100 in vegas] vegas.f90 0x4162¢8
+ [Loop at line 112 in vegas] 99.6% 1.531s distress [Loop at line 112 in vegas] vegas.f90 0x416641
v [Loop at line 112 in vegas] ‘ 98.2% 13.427s distress [Loop at line 112 in vegas] vegas.f90 0x4166f1
+ [Loop at line 2499 in dxsec_ql_| 36.9% 15.606s distress [Loop at line 2499 in dxsec_qgl... xsec.f90 0x4Sba17
v [Loop at line 263 in spinoru] \ 24.2% 1.422s distress [Loop at line 263 in spinoru] aux.fo0 Ox41ecd6
23.2% 32.939s | distress [Loop at line 264 in spinoru] aux.f90 Ox41edcf
) [Loop at line 258 in spinoru] 1.1% 0.498s distress [Loop at line 258 in spinoru] aux.fo0 Ox41ea%4
) [Loop at line 260 in spinoru] 0.4% 0.324s distress [Loop at line 260 in spinoru] aux.fo0 Ox41ec41
) [Loop at line 2487 in LHAPD 0.1% 0.048s libLHAPDF.so [Loop at line 2487 in LHAPDF:... stl_algo.h 0x669c9
) [Loop at line 1169 in LHAPD 0.1% 0.036s libLHAPDF.so [Loop atline 1169 in LHAPDF:... stl_tree.h 0x66960
) [Loop at line 139 in nnlobeami]‘ 19.1% Os distress [Loop at line 139 in nnlobeami] beaminteg... 0x4310f9
) [Loop at line 43 in ktjet] 6.4% 2.808s distress [Loop at line 43 in ktjet] analysis.f90 0x420c70
. b ILoop at line 2750 in dxsec o)l 3.8% 4.494s distress I[Loob at line 2750 in dxsec al... xsec.f30 0x49d2b2 v
O: s = ¢ 0 20s 40s 60s 80s 100s 120s 140s |Thread o
'§ distress (TID: 55598) [ERunning
"_E- WaCPU Time
#Spin and Overhead ...

[] ®CPU Sample
CPU Utilization

WaCPU Time
#Spin and Overhead -
m CPU Utilization t l l .
Sg;:g:[g:z;l FILTER 100.0% | |Any Process v| |Any Thread vl IAny Module vl |Any Utilizatic vl | |User functions + 1 vl |Showinline functi \/I | Loops only VI nte

@ tel VTune Amplifie o
= & s B = O wWelcome amplxe_distress__2019-04-10-20-23 »

[Hotspots Hotspots by CPU Utiization + @ INTELVTUNE AMPLIFIER 2019_

HPC Performance Characterization

Analysis Configur ottom-up Caller/Callee = Top-down Tree = Platform aux.f90 x aux.f90 x yd
Grouping:| Call Sta Hotspots by CPU Utilization |VH 1P L
. . alv > I CPU Time: Self > Module] Function (Full) I Source File | Start Address I "
Total Threading Efficiency 100.0% 0s
[Outside any loop] I 99.9% 0.020s [Outside any loop] 0
[Loop at line 100 in vegas] 99.6% Os distress [Loop at line 100 in vegas] vegas.fo0 0x4162c8
[Loop at line 112 in vegas] 99.6% 1.531s distress [Loop at line 112 in vegas] vegas.f90 0x416641
[Loop at line 112 in vegas] 98.2% 13.427s distress [Loop at line 112 in vegas] vegas.fo0 0x4166f1
[Loop at line 2499 in dxsec_ql_ 36.9% 15.606s distress [Loop at line 2499 in dxsec_qgl... xsec.f90 0x4Sba17
[Loop at line 263 in spinoru] 24.2% 1.422s distress [Loop at line 263 in spinoru] aux.fo0 Ox41ecd6
[Loop at line 264 in spinori 23.2% 32.939s distress [Loop at line 264 in spinoru] aux.fo0 Ox41edcf
[Loop at line 258 in spinoru] 1.1% 0.498s distress [Loop at line 258 in spinoru] aux.fo0 Ox41ea%4
[Loop at line 260 in spinoru] 0.4% 0.324s distress [Loop at line 260 in spinoru] aux.fo0 Ox41ec41
[Loop at line 2487 in LHAPD 0.1% 0.048s libLHAPDF.so [Loop at line 2487 in LHAPDF:... stl_algo.h 0x669c9
[Loop at line 1169 in LHAPD 0.1% 0.036s libLHAPDF.so [Loop at line 1169 in LHAPDF:... stl_tree.h 0x66960
[Loop at line 139 in nnlobeami] 19.1% Os distress [Loop at line 139 in nnlobeami] beaminteg... 0x4310f9
[Loop at line 43 in ktjet] 6.4% 2.808s distress [Loop at line 43 in ktjet] analysis.f90 0x420c70
. I[Loop at line 2750 in dxsec c)l 3.8% 4.494s distress I[Loob at line 2750 in dxsec al... xsec.f30 0x49d2b2 v
o+ os R M= S M s 0 M, (|6 e -
§ WaCPU Time
#Spin and Overhead ..
[] @ CPU Sample
CPU Utilization
WuCPU Time
#Spin and Overhead -..
m CPU Utilization
fg‘:z'e'rg:taf FILTER 100.0% o ‘ |Any Process v] IAny Thread vl IAny Module v‘ |Any Utilizatic v‘ ‘ | User functions + 1 v| | Show inline functi v‘ | Loops only vl

Intel VTune Amplifier@jlselogin1

F & » & OB = O | welcome x || rooohpc x

Bottom-up
Grouping:] Function / Call Stack) [@
» » Back-End Bound
Function / Call Stack -ﬁ;% ¥ | CPlRate Front-End Bound Bad Speculation Memory Latency Mer
L1 Hit Rate L2 Hit Rate L2 Hit Bound L2 Miss Bound UTLB Overhead Split Loads

6.8%| 109 15.2% %| __97.9%| _100.0% %
» bicub_interpol2_aio_vec 11.1% 1.488 36.4% 0.9% 97.8% 100.0% 7.2% 0.0% 0.3% 0.0%
) efield_gk_elec2_vec 10.9% 1.850 29.2% 1.0% 85.2% 100.0% 31.0% 0.0% 2.7% 0.0%
» derivs_elec_vec 8.7% 2.241 57.9% 0.2% 86.2% 100.0% 28.7% 0.0% 0.3% 0.0%| {
) field_following_pos2_vec 5.7% 0.969 43.6% 1.8% 94.3% 100.0% 33.3% 0.0% 0.2% 0.0%| H
) i_interpol_ider0_aio_vec 5.3% 1.896 12.0% 0.0% 89.5% 100.0% 11.8% 0.0% 0.5% 0.0%
) field_vec 4.8% 2.413 57.1% 0.0% 89.9% 100.0% 23.6% 0.0% 0.0% 0.0%
) derivs_single_with_e_ele 3.0% 1.734 55.5% 0.0% 88.5% 100.0% 34.4% 0.0% 0.8% 0.0%
» fld_vec_modulefield_follc 3.0% 1.189 34.9% 6.7% 74.0% 100.0% 73.0% 0.0% 0.9% 0.0%
» bvec_interpol_vec 2.9% 1.131 38.8% 0.0% 91.2% 100.0% 36.2% 0.0% 0.0% 0.0%
» pushe_single_vec 2.3% 1.943 43.9% 1.5% 71.3% 100.0% 54.7% 0.0% 1.1% 5.1%
I | '|Iternnl ider0 aio vec o o 0.0% 0.0% 1.4% 0.0%

O: dp wu i OSI) 183.876s |200s @ [Thnead '[

®| OMP Master Thread #0 (... « [Running
g ¥ waCPU Ti
E OMP Worker Thread #1 (... Y - me
G .
OMP Worker Thread #2 (... ¥ CPU Time
#aCPU Time

OMP Worker Thread #3 (...
OMP Worker Thread #17 ...
OMP Worker Thread #55 ...

paused

OMP Worker Thread #52 ...

CPU Time

(Y]

| User functions + 1 v | |Functions only v | | Show inline functions ¥

Any Process 7| Any Thread v | Any Module |

X

Viewing the result

e Text file reports:
* amplxe-cl -help report How do | create a text report?
* amplxe-cl -help report hotspots What can | change
* amplxe-cl -R hotspots -r ./res_dir -column=? Which columns are available?

e Ex: Report top 5% of loops, Total time and L2 Cache hit rates
e amplxe-cl -R hotspots -loops-only
-limit=5 -column=“L2_CACHE_HIT, Time Self (%)”
* Vtune GUI
e unset LD_PRELOAD; amplxe-gui

Optimization Notice

Copyright © 2020, Intel Corporation. All ri r
*Other names and brands may be claime

Using result path “/gpfs/jlse-fso/users/pvelesko/nbody-demo/ver5/amplxe_knl_nodiv_66k*
Executing actions 75 % Generating a report Elapsed Time: 280.549s
Clockticks: 405,093,000,000
Instructions Retired: 342,199,000,000
CPI Rate: 1.184
MUX Reliability: 0.992
Front-End Bound: 1.5% of Pipeline Slots
ITLB Overhead: 0.0% of Clockticks

°
BACLEARS: 0.1% of Clockticks
MS Entry: 0.0% of Clockticks
ICache Line Fetch: 1.0% of Clockticks

Speculation: 0.2% of Pipeline Slots
Branch Mispredict: 0.2% of Clockticks
SMC Machine Clear: 0.0% of Clockticks
MO Machine Clear Overhead: 0.0% of Clockticks
Back-End Bound: 56.2% of Pipeline Slots
| A significant proportion of pipeline slots are remaining empty. When
operations take too long in the back-end, they introduce bubbles in the
pipeline that ultimately cause fewer pipeline slots containing useful
work to be retired per cycle than the machine is capable of supporting.
This opportunity cost results in slower execution. Long-latency
operations like divides and memory operations can cause this, as can too
. . many operations being directed to a single execution port (for example,
[z General Exploration Microarchitecture TGRSR PR LS SR AT

execution unit can support).

Memory Latency
. . . . L1 Hit Rate: 60.2%

Analys|s Conﬂguratmn Collection L@ Summ The L1 cache is the first, and shortest-latency, level in the
memory hierarchy. This metric provides the ratio of demand load
requests that hit the L1 cache to the total number of demand load

- " F t C ” St k requests.

arouping: Function / Call Stac Wit rote: 95,0

Hit Boun 100.0% of Clockticks

Issue: A significant portion of cycles is being spent on data

Function / Call Stack fetches that miss the L1 but hit the This metric includes d Speculation Back-End Bound Retiring

coherence penalties for shared data.

GSimulation::start i 0.1% 41.3% 58.6%

1. If contested accesses or data sharing are indicated as likely
. . . issues, address them first. Otherwise, consider the performance
apic_timer_interrupt tuning applicable to an L2-missing workload: reduce the data 4
- - working set size, improve data access locality, consider blocking
or partitioning your working set so that it fits into the L1, or

native write msr safe better exploit hardware prefetchers.
2. Consider using software prefetchers, but that they can

interfere with normal loads, potentially increasing latency, as
well as increase pressure on the memory system.

= — — Miss Bound: 36.2% of Clockticks
Issue: A high number of CPU cycles is being spent waiting for L2
Grouping: Function / Call Stack

load misses to be serviced.

Tips:

1. Reduce the data working set size, improve data access
Tlocality, blocking and consuming data in chunks that fit into the
L2, or better exploit hardware prefetchers.

Function / Call Stack 2. Consider using software prefetchers but note that they can Me mory Late ncy

increase latency by interfering with normal loads, as well as

| ncresse pressure on the nemery systen. L2 Hit Bound L2 Miss Bound L UTLB Overhead |!

UTLB Overhead: 4.0% of Clockticks
| I 0.09

SIMD Compute-to-L1 Access Ratio: 1.490 o
SIMD Compute-to-L2 Access Ratio: 4.003 }M

| This metric provides the ratio of SIMD compute instructions to = i
. A | the total number of memory loads that hit the L2 cache. On this
lanir navt daadlina | platform, it is that this ratio is large to ensure

| efficient usage of compute resources.

Contested Accesses (Intra-Tile): 0.0%
Page Walk: 4.9% of Clockticks
Memory Reissues
Split Loads:
split Store 3
Loads Blocked by Store Forwarding: 0.0%
Retiring: 42.1% of Pipeline Slots

Optimization Notice VPU Utilization: 99.9% of Clockticks
Divider: 0.6% of Clockticks inter
Copyright © 2020, Intel Corporation. All rights reserved. MS Assists: 0.1% of Clockticks

; FP Assists: 0.0% of Clockticks
*Other names and brands may be claimed as the property of others. Total Th::;; Zoun 10 ocktacks

40

Microarchitecture Exploration - Caches

L1 Hit % 100%
L2 Hit % 0%

L2 Hit 0%
Bound %
L2 Miss 0%
Bound %

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

63.9%
100%
100%

0%

62.4%

100%
100%

0%

48.5% 57.5% 60.2%
100% 99.2% 98.8%
100% 100% 100%
0% 28.6% 36.2%

Software

Profiling PYThon & ML
applications

Python

Profiling Python is straightforward in VTune™ Amplifier, as long as one does the
following:

= The “application” should be the full path to the python interpreter used
= The python code should be passed as “arguments” to the “application”
In Theta this would look like this:

aprun -n 1 -N 1 amplxe-cl -c hotspots -r res dir \
-- /usr/bin/python3 mycode.py myarguments

Optimization Notice

Copyrig 0, Intel Corporation. All rights reserved.
d brands may be claimed as the property of others.

Simple Python Example on Theta

aprun -n 1 -N 1 amplxe-cl -c hotspots -r vt pytest \
-- /usr/bin/python ./cov.py naive 100 1000

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ INTELVTUNE AMPLIFIER 2018
< B Collection Log @ Analysis Target A Analysis Type i Summary & Bottom-up & Caller/Callee & Top-down Tree ' Platform [3 cov.py 3

Naive implementation of the calculation of
Top Hotspots a covariance matrix

‘This section lists the most active functions in your application. Optimizing these hotspot functions typically resuits in improving overall application performance. 1

Function Module CPU Time

S
e Summary shows:
ovp) 0.588:

= Single thread execution

This histogram displays a percentage of the wall time the specific number of CPUs were running simutaneously. Spin and Overhead time adds to the Idie CPU usage value.

Target Uiization

= Top function is “naive”

| . . ;) Click on top function to go to Bottom-up
' Fr—— view

Simultaneously Utiized Logical CPUs

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bottom-up View and Source Code

Inefficient array multiplication found quickly
We could use numpy to improve on this

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) © I AMPLIFIER 2018
1 ElCollection Log @ Analysis Target A Analysis Type & Summary @ Bottom-up & Caller/Callee @ Top-down Tree =% Platform [cov.py o // >
Grouping:| Module / Function / Call Stack “|[«][Q CPU Time v]
CPU Time ¥ | Viewing « 10f1 + selected stack(s)
Module / Function / Call Stack L) Module 100.0% (112.473s of 112 473s)
v W o ey o | STme | OvtesdTime oy
v covpy 203728 2280s 0s covpylmain+0x42 - cov.py:200
¥ naive 111.873s (S 1660s 0s covpy naive(fullArray) covpyl<module>+0x221 - covpy:
v main 110.833s (N 1660 0s covpy main() python2.71_start+0x28 - [unknow.
1108135 16605 0s | covpy <modue>
» B main — <module> — _star 2 covpy main()
» H naive — main — <module> « 1.040s 0s 0Os covpy naive(fullArray)
» <genexpr> 90.967s S 06205 0s covpy naive@-<genexpr>1
» <module> 0.588s 0s 0Os covpy <module>
» main 0300 0s 0s covpy main()
» [Unknown] 2720s | os 0s
» libc-dynamic so 132
» python2.7
» libpin3dwarf so
~ trackdanc en)¢ _
< >|l< >
O: + 0s 50s 100s 150s 200 & [Thwead .
= # CPU Time
Spin and Overhead Ti
[* cPusample

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @
© ElCollectionLog O Analysis Target A Analysis Type & Summary & Bottom-up & Caller/Callee & Top-down Tree '

Assembly 4 & | % Q Assembly grouping: Function Range / Basic Block / Address

CPU Time:
Sou. Source Effective Time by Util
Line y Ut
Bidie @Poor Dok B ide:
59
60 # calculate norm arrays and populate norm arrays dict
61 for i in range (numCols) :
62 normArrays.append (np.zeros ((numRows, 1), dtype=float))
63 for j in range (numRows) : |
64 normArrays(i] [j]=fullArray[:, i][j]-np.mean(fullArray(:, i 6.3%-
65
66
67 # calculate covariance and populate results array
68 for i in range (numCols):
69 for j in range (numCols): |
70 result[i,j] = sum(p*q for p,q in zip(
7 normArrays[i],normArrays(j]))/ (numRows)
72
73 end = time.time()
74 print('overall runtime = ' 4 str(end - start))

Note that for mixed Python/C code a Top-Down view can often be helpful to drill down into the C kernels

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® VtunE™ Application
Performance Snapshot

Performance overview at you fingertips

VTune™ Amplifier’s Application Performance Snapshot

High-level overview of application performance

= |dentify primary optimization areas

= Recommend next steps in analysis

= Extremely easy to use

= Informative, actionable data in clean HTML report
= Detailed reports available via command line

= Low overhead, high scalability

Optimization Notice

Copyright © 2020, Intel Corporation. All ri r
*Other names and brands may be claime

Usage on Theta

Launch all profiling jobs from /projects rather than /home
No module available, so setup the environment manually:
S module load vtune
$ export PMI NO FORK=1
Launch your job in interactive or batch mode:
$ aprun -N <ppn> -n <totRanks> [affinity opts] aps ./exe
Produce text and html reports:

$ aprun -report ./aps result ...

Optimization Notice

Copyrig , Intel Corporatio
brands may be c

APS HTML Report

Application: heart_demo
Report creation date: 2077-08-01 12:08:48

umber o anks: 144 Your application is MPI bound.
anks per node:
ope”,jp threads per rank: 2 This may be caused by high busy wait time inside the library (imbalance), non-
HW Platform: intel(R) Xeon(R) Processor code named Broadwell-EP optimal communication schema or MPI library settings. Use MPI profiling tools
Logical Core Count per node: 72 like Intel ® Trace Analyzer and Collector to explore performance bottlenecks.
1 2 1 3 9 S Cumentun Tagst Dela

© MPI Time 53.74%K <10% | EE——

043% <10%

1470% <20%
0.30%K >50%
0.00% <10%

50.98

0.68

SPFLOPS

MPI Time Memory.Stalls

53.74%k of Elapsed Time 0.43% of Elapsed Time 14.70% of pipeline slots 0.30%N~

65.23 0.52s,

65259 029 Cache Stalls SPFLQPs per Cycle
MPI Imbalance 12.84% of cycles 0.08 Out of 32.00
11.03% of Elapsed Time i
(13 ;9:) P Memory Footprint DRAM talls Vector. Capacity Usage

. . Resident: 0.18% of cycles 25.84%K
TOP 5 MPI Functions % Per node:
Waitall 37.35 Peak: 786.96 MB N.l.J.M/?_ FP Instruction Mix
o -+ 3.549

lsend 648 Average: 687.49 MB 31.79% of remote accesses % of Packed FP Instr.: 3.54%
- Per rank:

Barrier 5.52 Peak: 127.62 MB

Irecv 3.70 Average: 38.19 MB

Scatterv 0.00 Virtual:

Per node:
Peak: 9173.34 MB

_| /OBoun d A\./e.*ragf-:‘: 9064.92 MB

0.00% Per rank:

(AVGGO 00, PEAK 0.00) Peak: 566.52 M5

U0 RS : Average: 50361 MR

[0) zation Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Common issues

Fixes

No call stack information - check that finalization
Incompatible database scheme - make sure the same version of vtune

Vtune sampling driver.. using perf - use latest vtune/ driver needs a rebuild

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Tips and tricks

Speeding up finalization

Advisor Vtune

add "--no-auto-finalize to the aprun add "--finalization-mode=none" to aprun
followed by "advixe-cl R survey ..." without followed by "amplxe-cl -R hotspots ..." without
aprun will cause to finalize on the momnode aprun will cause to finalize on momnode rather
rather than KNL. than KNL

You can also finalize on thetalogin: You can also finalize on thetalogin:

cd your_src_dir; cd your_src_dir;

export SRCDIR="pwd | xargs realpath’ export SRCDIR="pwd | xargs realpath’

advixe-cl -R survey --search-dir src:=S{SRCDIR} amplxe-cl -R hotspots --search-dir src:=S{SRCDIR}

Optimization Notice

©
*

Managing overheads

Advisor Dependencies and MAP analyses can have huge overheads

If able, run on reduced problem size. Advisor just needs to figure out the execution flow.

Only analyze loops/functions of interest:

https://software.intel.com/en-us/advisor-user-guide-mark-up-loops

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/advisor-user-guide-mark-up-loops

Advisor hands on

Collect survey and tripcounts

cd /projects/intel/pvelesko/nody-demo/ver0
make

cp /soft/perftools/intel/advisor/advixe.qsub ./
gsub ./advixe.qsub ./nbody.x 2000 500

scp result back to your local machine

Text report can also be useful:

advixe-cl -R survey

Optimization Notice

Copyright © 2020, Intel Col tion
*Other names and brands

View Result

X-forwarding is not recommended.

Tar the result along with sources (if you want to be able to view them)
or
Generate a snapshot:

S advixe-cl --snapshot --pack --cache-sources --cache-binaries

then scp to your local machine

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Summary Report

m C:\Users\pauliusv\Desktop\webinar\advixe_ver0 - Intel Advisor - O X

Summary provides overall
i_[h | B B2 | B @ » StartSurvey Analysis < | <% | B | @ . .
Tm—] performance characteristics
[@ | Elapsed time: 29365 FILTER| All Modules ~|[Al %ourc€s - /

Summary |% Survey & Roofline ™ Refinement Reports

: Top time consuming loops are listed
H Vectorization Advisor . el .
individually
Vectorization Advisor is a vectorization analysis toolset that lets you identify loops that will benefit most from vector parallelism

discover performance issues preventing from effective vectorization and characterize your memory vs. vectorization bottlenecks
with Advisor Roofline model automation

, Vectorization efficiency is based on
e used ISA (in this case SSE2/SSE)

Vector Instruction Set AVX512, AVX2, AVX » GINTOPS 0.03
Number of CPU Threads 1

© Performance characteristics NOte the wa rnlng rega rdlng d hlghel"

Metrics Total . .

Total CPU time 20355 (S 100% ISA (|n th|s Case _XMIC_AVXS 12)
Time in 2 vectorized loops 29.31s 99.9%

Time in scalar code 0.04s 0.1%

(® Vectorization Gain/Efficiency

(® OP/S and Bandwidth

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Survey Report (Code Analytics Tab)

(& C\Users\pauliusy\Desktop\webinar\advixe_ver0 - Intel Advisor - %
File View Help
| EF B2 | @) StartSurvey Analysis < | <% | | @

lcome €000 x v

Analytics tab contains a wealth
of information

Elapsed time: 29365

ary % Survey & Roofline % Refinement Reports INTEL ADVISOR 2019 .
]
@Performance | CPUTime 2] Vectorized Loops 5 nstruction Set Analysis Instruction set
[+ Function Call Sites and Loops . Type Why No Vectorization?
ssues Total Time | Self Time v VectorI5A | Efficiency | Gain .. | VL (Ve... Traits
loop in GSimulation::start at GSimulation.cpp:132] © 2 Possible ineffi... 29.306s B0 29.306s @ Vectorized (Body) AVX512 823x 16 2-Source Permutes; Blends; Extracts; FMA; G = |nstruction mix
ioop in GSimulation:start at GSimulation.cpp:130] &1 Data type conv... 20342 @HEE 00365 Scalar & inner loop was already V.. 2-Source Permutes; Blends; Extracts; FMA; Gath
lloop in GSimulation:start at GSimulation.cpp:153] 1 Possible ineffici... 0.008s! 0008s| Vectorized (Body) AVX512 161 16 2-Source Permutes; Blends; FMA; Gathers; Mask
{loop in _libc_start_main at libc-start.c:186] 203505 @M 00005 Scalar - H (
b lloop in _libc_start_main at libc-startc:173] 20350s @I 00005 Scalar Traits sq rt' type
 [loop in GSimulation:start at GSimulation.cpp:127] & 1 Data type conv... 29.350s @M 0.000s| Scalar & inner loop was already v... Appr. Reciprocals(AVX-512ER); Divisions; Expor :
conversions, un paCkS)
= Vector efficiency
g > = Floating point statistics
i Source | Top Down ‘ Code Analytics | Assembly ‘ 9 i I @ Why No Vectorizati
Loop in GSimulation::start at GSimulation.cpp:132 Average Trip Counts: “ 125 (= GFLOPS:1.86 ® .
GINTOPS: 0.03 And explanations on how they
29.306s AVX-512 Mask Usage: 96%!
Veetorzed (503 Totl e are measured or calculated -
Roofline ®
AVX512ER_512; 29.306s oot
=r19 PR . X Code Optimizations
AVX512F 512 Selftime ;Mﬂ DP Veclor FIA Peak Compiler: Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64, ex p an d t h e bOX or h over over
Instruction Set $ Version: 19.0.5.281 Build 20190815 .
Compiler estimated gain: 6.31x
G oy Gompier o messages the question marks.
> Memory ~ 30% (4250000000, 3 e
> Compute 32% (4500000000, 3 2
> Mixed 2% (250000000, 104 12.19 GFLOPS (16.6x)
Other 36% (5000000000, 40) (D
CPU Total Time -
2.34447e-07s 0.00003s o 1.86 GFLOPS
Per lteration | Per Instance o 1.29 FLOP/Byte
W w‘aapa\
,\
FLOPByle (vitmeto nensiy) <

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Survey Report (Source Tab)

(@ | e 540s [) RS IRVECTRY -] o[o |—m Notice the following:

B Summary % Survey & Roofline | ™ Refinement Reports
v & Higher instruction set architecture (ISA) available

AV

4€20f2 ® X . .
= Higher ISA available
Consider recompiling your application using a higher ISA.
o Vectorized Loops FLOPS p)] i
8 [+] [=] Function Call Sites and Loops BiRerformance Self Time v |Total Time |Type Why No Vectorization? - - Type conversion
o Issues Vector...| Efficiency Gain E... | VL (Ve... Self GFLOPS
B+ [loop in GSi ion::start at GSimulation.cpp:138] | & 1 Data type con... 90.600s @ 90.600s @M Vectorized (Body) SSE2 91% 1.82x 2 0.993 = Use of square root
. %O [loop in GSimulation:start at GSimulation.cpp:136] 0.020s! 90.620s B Scalar @ inner loop was already v... 0.1500@
i f _start 0.000s! 90.620s @ Function
< § main 0000s| 90.620s @HEN Function i All of these elements may
« f GSimulation:start 0.000s! 90.620s EEEER Function “l
S — - i — - affect performance
< >« >
! source ‘TopDown ‘ Code Analyti ’ A |w‘ ations | & Why No Vectorization?
Line Source Total Time | % | Loop/Function Time | % Traits "‘ ()
I35 = IUr (imu S—1; S~—gTT_uSTSES\7s TSy |
134 {
135 t=0 += time.start();
136 for (i = 0; i < n; i++)// update acceleration
137 {
138 © for (3 = 0; j < m; j++) 1.020s 90.6005 m—
[loop in GSimulation::start at GSimulation.cpp:138
Vectorized SSE; SSE2 loop processes Float32; Float64; Inté4 data type(s) and includes Square Roots; Type Convers|
No loop transformations applied
Selected (Total Time): 1.020s v

>

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Cache-Aware Roofline Model (CARM) Analysis

EI Elapsed time: 29.36s FILTER:I All Modules v|| All Sources '“ Loops And Functions '“ All Threads v|

Summary % Survey & Roofline i Refinement Reports

|ﬁ' CustomizeViewH Q |
INTELADVISOR 2019

R Q ey v ‘ Cores: 1 9 v HY Default: FLOAT v
100

|T Compare v H / Guidance ‘

AIAYNS

SdO149

Tl ?
_ SP Veetor Add Peak: 38.12 GFLOPS,
- Vector FMA Peak: 38.1 GFLOPS

2

DP Vector Add Peak: 19.05 GFLOPS

2
Scalar Add Peak: 2.23 GFLOPS

y
0.1 4 :

Viemory

Compute bound
FLOP/Byte (Arithmetic Intensity)
T . ! i
0.01

X 0.1 10
Physical Cores: 64 © App Threads: 1 © gelf Elapsed Time: 29.262 s Total Elapsed Time: 29.262 s

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Follow recommendations and re-test

In this new version (ver2 in github BISumman | % survey & Roofine £ Refinement Reports - N
. . P @ Performance) Vectorized Loops Bl| FLOP;
sam p | e) we intro d ucet h e fol | owin g § B[] Function Call Sites and Loops e Self Time v |Total Time | Type Why No Vectorization? vector_|ffciengy | Gaim £ VL e [settd
. 2 [loop in tat cpp:138] ¢2 gat... 10.080s @8 10.080s @ Vectorized (Body) AVXS5... 10.05x 16 2.09:
changes:
«/G [loop in GSimulation:start at GSimulation.cpp:136] ¢ 1 Opportunity for.. 0.060s! 10.140s @D Scalar & inner loop was already v... 1.700
e § _start 0.000s| 10.140s @I Function
™ H ‘d * 5 f main 0.000s| 10.140s @B Function
Consistently use float types to avoi a1 4 o
45 [loop in GSimulation:start at GSimulation.cpp:133] ¢ 1 Data type conv.. 0.000s! 10.140s @ Scalar & inner loop was already v...
ype conversions in GSimulation.cpp

u Recompile tota rget IntEI® Xeon Phi W Code Analytics ‘Asembly |wRecommendations & Why No Vectorization?
7230 with -xMIC-AVX512 .

Loop in GSimulation::start at GSimulation.cpp:138 Average Trip Counts: 125 @ GFLOPS: 2.09325 @
AVX-512 Mask Usage: 37
.) 10.080s o
N Ote Ch a nges I n S U rvey re pO rt . Vectorized (Body) Total time
e
AVX512ER_512; 10.080s Traits ® static Instruction Mix ©

= Reduced vectorization efficiency AVXS12E 513 Seftme e e 9 o
i i Instruction Set athers Number of Vector Registers
(harder with 512 bits) S 12" Narberof Vecr Regsters. 3

o Irregular Memory Access Patterns May Decrease Perfor

Yo - . -)
Static Instruction Mix Summary’ Su e
Y ggestion: See Recommendations Tab

]

= Type conversions gone " Comere S)

> Mixed 4% (2)0 E!Iendsv
Other 21% (12) @B

= Gathers/Blends point to memory > Dynamic nstnuction Mix Summary’ e
issues and vector inefficiencies =

@ 2-Source Permutes

- I 10.05x Mask Manipulations
63% Vectorization Efficiency Vectorization Gain

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Vectorization: gather/scatter operation

The compiler might generate gather/scatter instructions for loops automatically vectorized where

memory locations are not contiguous

{
public:

real_ type
real_ type
real_ type
real_ type

}i

struct Particle

pos[3];
vel[3];
acc[3];
mass;

{

public:
real_ type
real_ type
real_ type
real_ type

}i

struct ParticleSoA

*pos_x,*pos_y, *pos_2z;
*vel x,*vel_y,*vel_z;
*acc_x,*acc_y; *acc_z
*mass;

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

AoS - array
of structures
Memory
D ~
2}
il
'.l.
Q
[
0
[0}
2
.
o] -
o
2}
il
'.l.
Q
[
0
1]
'E
& -

//

N4

Vector
Register

SOA - structure

of arrays

Memory

p.pos_x[i]

p.pos_x[i+l]
p.pos_x[i+2]
p.pos_x[i+3]
p.pos_x[i+4]
p.pos_x[i+5]
p.pos_x[i+6]
p.pos_x[i+7]

p.pos_x[i+8]

h

A4

v

Vector
Register

Memory access pattern analysis g HERERTEEe

How should | access data ?

For B, 1 cache line load computes 4 DP

Unit stride access are faster

for (i=0; i<N; i++) B ‘...-...

A[i] = B[i]*d

For B, 2 cache line loads compute 4 DP with
reconstructions

Constant stride are more complex

for (i=0; i<N; i+=2)
A[i] = B[i]*d

Non predictable access are
usually bad

for (i=0; i<N; i++)
A[i] = B[C[i]]*d

For B, 4 cache line loads compute 4 DP with
reconstructions, prefetching might not work

Follow recommendations and re-test

In this new version (ver3 in github

sample) we introduce the following
change:

(5 §
14
3
-]
H
2

% Survey & Roofline % Refinement Reports

| Vectorized Loops FLOPS A
] =] Function Call Sites and Loops grEiiomuance Self Time v |Total Time | Type Why No Vectorization? |
Vector...|Gain E... | VL (Ve... | Self GFLOPS <

Issues
= [loop in GSil ion::start at GSi ion.cpp:151] ¢ 1 dep... 46.360s 0 46.360s B Scalar & vector dependence pre... 11220 ¢
Scalar loop. N

ININH00Y
ol

vectorized: vector dep ‘Scalaz loop. Not vectorized: vector dependence prevents vectorization

No loop tran ations applied No loop transformations applied

. i 4O [loop in GSimulation:start at GSimulation.cpp:171] @ 1 Assumed depe.. 0.040s! 0.040s| Scalar @ vector dependence preve... 04753 C
= Change particle data structures

S f start 0.000s! 46.400s @ Function
% § main 0.000s! 46.400s @ Function
from AOS to SOA « f GSimulation:start 0.000s| 46.400< WA Function cY
< > < >
. Source | Top Down | Code Analytics ly | ¥ i & Why No
Note changes in report: | | | .
. Loop in GSimulation-start at GSimulation.cpp:151 Average Trip Counts: 2000 () GFLOPS: 1.12166 ®
= Performance is lower (D 46.360s AVX-512 Mask Usage: 100
. . Scalar Total time
= Main loop is no longer 46360 Static Instruction Mix © Code Optimizations
. d Se’%z me S) Compiler: ITI?I(I[?R))%;* Intel(R) 64 Compiler for applications
- orv- Compute M Other running on intel s
vectorize ooy s Comue 1 Mo . O
¥ Static Instruction Mix 2”73/;/
> M 24% (8]
= Assumed vector dependence > Compute 355 1) D
. > Mixed ' 32% (11) GHED
prevents automatic Other 124 (6@
. . » Dynamic Instruction Mix Summary'
vectorization
Traits ®
Sauare Roots. FMA - e

Next step is clear: perform a Dependencies analysis

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Suggested solutions

Memory Access Patterns Report | Dependencies Report ’ ¥ Recommendations
All Advisor-detectable issues: C++ | Fortran

Recommendation: Resolve dependency

The Dependencies analysis shows there is a real (proven) dependency in the loop. To fix: Do one of the following:

« If there is an anti-dependency, enable vectorization using the directive #pragma omp simd
safelen(length) , where length is smaller than the distance between dependent iterations in
anti-dependency. For example:

$pragma omp simd safelen(4)
for (1 =0; 1 < n - 4; 1 += 4)
{

al[i + 4] = a[i] * c;

ISSUE: PROVEN (REAL) DEPENDENCY
PRESENT

The compiler assumed there is an
anti-dependency (Write after read - WAR) or
true dependency (Read after write - RAW) in the
loop. Improve performance by investigating the
assumption and handling accordingly.

Resolve dependency

o If there is a reduction pattern dependency in the loop, enable vectorization using the directive #pragma omp simd reduction(operator:list) . For example:

fpragma omp =simd reduction (+:sumx)
for (k = 0;k < size2; k++)
{

sumx += x[k]*b[k];

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Analyze Result - advixe ver4d

Vectorization time back to normal

Reduced execution time

Optimization Notice

Copyright © 2020, Intel Corporation. All ri r
*Other names and brands may be claime

Adwsor Roofline — How much further can we go?

;1 < n; 1++)

Performance Metrics Summary ~

. e =

__assume_aligned(particles->pos_x, alignment); kQ |Cores: |1 v =
__assume_aligned(particles- _y, alignment); Q
__assume_aligned(particles- _z, alignment); 1008)
__assume_aligned(particles->acc_x, alignment); o 75.79 GFLOPS (4.3x)® . SP Vector FMA Peak: 75.79 GFLOPS’
__assume_aligned(particles->acc_y, alignment); : . .
__assume_aligned(particles->acc_z, alignment);
__assume_aligned(particles->mass, alignment);
real_type ax_1 = particles-»acc_x[1];
real_type ay 1 = particles-»acc_y[1]; .
real_type az_1i = particles-»acc_z[1]; i

— 104 [loop in GSimulation::start at GSimulation.cpp:156] |

Bt i Performance: 17.67 GFLOPS
‘ (3 ;] < n; J+E) L1 Arithmetic Intensity: 0.69 FLOP/Byte
real_type dx, dy, ; L

real_type distanceSqr
real_type distanceInv

distanceSqr = &=x0 ay=sy + dz*dz + softeningSquared; , 18
distanetty 07/ sartiietancesar’ Current % of Peak = — = 40%

* particles->mass[j] * distanceInv * distanceInv * distancelInv; . 44
* particles->mass[j] * distanceInv * distanceInv * distanceInv;
* particles->mass[j] * distanceInv * distanceInv * distancelnv; I

Why only 40%?

* Vectorization Efficiency

* Long Latency/Complex Operations
3 =+ PoorCache Utilization

FMA Ratio = E = 10% thsical%grles. 64 @ App Threads: 1 @

Peak = SP Vector ADD * (1+ FMA Ratio)
Peak =40 * (1 + 0.1) = 44 GFLOPS

particles->acc_x[1] = ax_1i;
particles-=»acc_y[1] = ay_1;
particles->acc_z[1] = az_i;

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Vectorization Efficiency?

E] Elapsed time: 5.19s [RORVEIET 0| Not Vectorized -FIIJ'ER: All Modules -

Summary ® Survey & Roofline |®j Refinement Reports
Vectorized Loops (

[=] Function Call Sites and Loops O8

El@® [loop in GSimulation::start at GSin
(5 [loop in GSimulation::start at GSimulatii [] {

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Complex Operations?

Performance Metrics Summary ~ ormance Metrics Summary ~
R Q |Cores: 1+ e = Cores:| 1 v | @
o |]
s P
190 o
10018 7 10048 !

75.79 GFLOPS (4.3x)-® o

[loop in GSimulatiol
P

104 . [loop in GSimulation::start at GSimulation.cpp:156]
: Perf 17.67 GFLOPS
Ol

\2
A2 ®
0.14
0.1+
v . v
!
FLOP/Byte (Arithmetic Intensity) |-01 FLOP/Byte (Arithmetic Intensity)

0.01 0.1 1 10 0.01 0.1 1 10

Physical Cores: 64 @ App Threads: 1 @ Phvsical Cores: 64 @ App Threads: 1 @

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory Performance

__assume_aligned(particles->
__assume_aligned(particles->
__assume_aligned(particles->
__assume_aligned(particles->
__assume_aligned(particles->

alignment
alignment
alignment

alignment

Maximum N before we lose caching?
KNL L1-32kB L2-1MB (1 tile/2cores)
32k/(4*4) = 2k (L1)

’
’
'
'
'
'

alignment);
alignment)

__assume_aligned(particles->

)

)

)

alignment)

)

)
__assume_aligned(particles-> ;

1MB/(7*4) = 35.7k(L2)
real_type ax_1 = particlesf>

real_type ay 1 = particlest>
real_type az_1 = particles¥\

GFLOPs vs N

real_type dx, dy, dz;
real_type distanceSqr = ; 80
real_type distanceloy = ;

= particles 70
= particles{>pos_yl[il];
= . particles-\pos_z[1i]; 60

distanceSqr = dx*dx + dy*dy + dz*dz + softeningSquared; 50

distanceInv / sqrtf(distanceSqr);
distanceInv * distanceInv * distancelInv; 40

* distanceInv * distanceInv * distanceInv; 30
* distanceInv * distanceInv * distanceInv;
}

particles ax_1; 20
particles K ay_1;
particles->acc_ az_1; 10

ax_1+= dx *
ay 1 += dy *
az_1 += dz *

1000
1500
2000
2500
30000
35000
40000
50000
60000
65000

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

backup

When do | use Vtune vs Advisor?

Vtune

What’s my cache hit ratio?

Which loop/function is consuming most
time overall? (bottom-up)

Am | stalling often? IPC?
Am | keeping all the threads busy?
Am | hitting remote NUMA?

When do | maximize my BW?

Advisor

Which vector ISA am | using?

Flow of execution (callstacks)

What is my vectorization efficiency?
Can | safely force vectorization?
Inlining? Data type conversions?

Roofline

VTune Cheat Sheet

Compile with —-g —-dynamic

amplxe-cl —-c¢ hpc-performance -flags -- ./executable

* --result-dir=./vtune output dir

e --search-dir src:=../src --search-dir bin:=./

* -knob enable-stack-collection=true —-knob collect-memory-

bandwidth=false
* -knob analyze-openmp=true
* —finalization-mode=deferred i1if finalization is taking too long on KNL
e -data-limit=125 € in mb
* -—trace-mpi for MPI metrics on Theta

* amplxe-cl —-help collect survey

Optimization Notice https://software.intel.com/en-us/vtune-amplifier-help-amplxe-

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others. cI-command-syntax

Advisor Cheat Sheet

Compile with —-g -dynamic

advixe-cl -c¢ roofline/depencies/map —-flags -- ./executable

—--project-dir=./advixe output dir
——search-dir src:=../src —--search-dir bin:=./

-no-auto-finalize 1f finalization 1s taking too long on
KNL

—-—-interval 1 (sample at 1lms interval, helps for profiling
short runs)

—~data-1limit=125 € in mb

advixe-cl -help

Optimization Notice https://software.intel.com/en-us/advisor-help-lin-command-

Copyright © 2020, Intel Corporation. All rights reserved.

line-interface-reference

*Other names and brands may be claimed as the property of others.

How much further can we
g0o?

Introducing the Cache-Aware Roofline Model

Platform peak FLOPs

How many floating point operations per second
, latform PE@
Gflop/s= min {;%am BW = Al

Theoretical value can be computed by specification
Example with 2 sockets InteI® Xeon® Processor E5-2697 v2

PEAK FLOP = 2 X x 12 X x 2=1036.8 Gflop/s
Number of sockets / Number of cores \ 1 port for addition, 1 for multiplication
Core Frequency Number of single precision

element in a SIMD register

More realistic value can be obtained by running Linpack
=~ 930 Gflop/s on a 2 sockets Intel® Xeon® Processor E5-2697 v2

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Platform PEAK bandwidth

How many bytes can be transferred per second

Platform PEAK
Platform BW > Al

Gflop/s= min

Theoretical value can be computed by specification
Example with 2 sockets Intel® Xeon® Processor E5-2697 v2
PEAK BW = 2) 1.866 x 8 x 4<119 GB/s

Number of sockets Byte per channel

M F
emory rrequency Number of mem channels

More realistic value can be obtained by running Stream
=~ 100 GB/s on a 2 sockets Intel® Xeon® Processor E5-2697 v2

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Drawing the Roofline

Platform PEAK

Gflop/s= min {Platform BW « Al

2 sockets Intel® Xeon® Processor E5-2697 v2
Peak Flop = 1036 Gflop/s
Peak BW =119 GB/s

a

1036 === m m e e -
Gflops/s

Memory BW bound

Compute bound

A 4

8.7

Al [Flop/Byte]

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Cache-Aware Roofline
Next Steps If Under the Vector Add Peak

If just above the

Scalar Add Peak

Check vectorization
efficiency in the Survey.

If under or near a memory P induce FMA usage. Follow the recommendations
roof... A to improve it if it’s low.

FMA Peak
* Try a MAP analysis.
Make any appropriate
cache optimizations.
* |If cache optimization is
impossible, try

Check “Traits” in the Survey to see if FMAs are used.
If not, try altering your code or compiler flags to

A

Vartor Add Peak If under the
Scalar Add Peak...

Check the Survey Report to

reworking the see if the loop vectorized. If
algorithm to have a
higher Al. if possible. This may involve

A A

1 |

1 1

1 1

1 |

1 1

1 1

[‘ not, try to get it to vectorize
‘ Scalar Add Peak

running Dependencies to see
if it’s safe to force it.

>

Arithmetic Intensity

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Software

